rclrs/parameter/
range.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
use crate::{
    vendor::rcl_interfaces::msg::rmw::{FloatingPointRange, IntegerRange},
    DeclarationError, ParameterValue, ParameterVariant,
};
use rosidl_runtime_rs::{seq, BoundedSequence};

impl From<ParameterRange<f64>> for ParameterRanges {
    fn from(params: ParameterRange<f64>) -> Self {
        Self {
            float: Some(params),
            ..Default::default()
        }
    }
}

impl From<ParameterRange<i64>> for ParameterRanges {
    fn from(params: ParameterRange<i64>) -> Self {
        Self {
            integer: Some(params),
            ..Default::default()
        }
    }
}

impl From<()> for ParameterRanges {
    fn from(_empty: ()) -> Self {
        Self::default()
    }
}

/// Contains all the possible type of ranges that can be applied to a value.
/// Usually only one of these ranges will be applied, but all have to be stored since:
///
/// * A dynamic parameter can change its type at runtime, in which case a different range could be
///   applied.
/// * Introspection through service calls requires all the ranges to be reported to the user.
#[derive(Clone, Debug, Default)]
pub struct ParameterRanges {
    float: Option<ParameterRange<f64>>,
    integer: Option<ParameterRange<i64>>,
}

impl ParameterRanges {
    pub(crate) fn to_descriptor_ranges(
        &self,
    ) -> (
        BoundedSequence<IntegerRange, 1>,
        BoundedSequence<FloatingPointRange, 1>,
    ) {
        let int_range = self
            .integer
            .as_ref()
            .map(|range| {
                // Converting step to a positive value is safe because declaring a parameter with a
                // negative step is not allowed.
                // TODO(luca) explore changing step into a positive value in the generic definition to
                // make negative steps a compile error.
                if range.is_default() {
                    Default::default()
                } else {
                    seq![1 # IntegerRange {
                        from_value: range.lower.unwrap_or(i64::MIN),
                        to_value: range.upper.unwrap_or(i64::MAX),
                        step: range.step.unwrap_or(0).try_into().unwrap(),
                    }]
                }
            })
            .unwrap_or_default();
        let float_range = self
            .float
            .as_ref()
            .map(|range| {
                if range.is_default() {
                    Default::default()
                } else {
                    seq![1 # FloatingPointRange {
                        from_value: range.lower.unwrap_or(f64::NEG_INFINITY),
                        to_value: range.upper.unwrap_or(f64::INFINITY),
                        step: range.step.unwrap_or(0.0),
                    }]
                }
            })
            .unwrap_or_default();
        (int_range, float_range)
    }

    pub(crate) fn validate(&self) -> Result<(), DeclarationError> {
        if let Some(integer) = &self.integer {
            integer.validate()?;
        }
        if let Some(float) = &self.float {
            float.validate()?;
        }
        Ok(())
    }

    pub(crate) fn in_range(&self, value: &ParameterValue) -> bool {
        match value {
            ParameterValue::Integer(v) => {
                if let Some(range) = &self.integer {
                    if !range.in_range(*v) {
                        return false;
                    }
                }
            }
            ParameterValue::Double(v) => {
                if let Some(range) = &self.float {
                    if !range.in_range(*v) {
                        return false;
                    }
                }
            }
            _ => {}
        }
        true
    }
}

/// Describes the range for paramter type T.
#[derive(Clone, Debug, Default)]
pub struct ParameterRange<T: ParameterVariant + PartialOrd> {
    /// Lower limit, if set the parameter must be >= l.
    pub lower: Option<T>,
    /// Upper limit, if set the parameter must be <= u.
    pub upper: Option<T>,
    /// Step size, if set and `lower` is set the parameter must be within an integer number of
    /// steps of size `step` from `lower`, or equal to the upper limit if set.
    /// Example:
    /// If lower is `Some(0)`, upper is `Some(10)` and step is `Some(3)`, acceptable values are:
    /// `[0, 3, 6, 9, 10]`.
    pub step: Option<T>,
}

impl<T: ParameterVariant + PartialOrd + Default> ParameterRange<T> {
    fn is_default(&self) -> bool {
        self.lower.is_none() && self.upper.is_none() && self.step.is_none()
    }

    fn inside_boundary(&self, value: &T) -> bool {
        if self.lower.as_ref().is_some_and(|l| value < l) {
            return false;
        }
        if self.upper.as_ref().is_some_and(|u| value > u) {
            return false;
        }
        true
    }

    fn validate(&self) -> Result<(), DeclarationError> {
        if self
            .lower
            .as_ref()
            .zip(self.upper.as_ref())
            .is_some_and(|(l, u)| l > u)
        {
            return Err(DeclarationError::InvalidRange);
        }
        if self.step.as_ref().is_some_and(|s| s <= &T::default()) {
            return Err(DeclarationError::InvalidRange);
        }
        Ok(())
    }
}

impl ParameterRange<i64> {
    fn in_range(&self, value: i64) -> bool {
        if !self.inside_boundary(&value) {
            return false;
        }
        if self.upper.is_some_and(|u| u == value) {
            return true;
        }
        if let (Some(l), Some(s)) = (self.lower, self.step) {
            if (value - l) % s != 0 {
                return false;
            }
        }
        true
    }
}

impl ParameterRange<f64> {
    // Same comparison function as rclcpp.
    fn are_close(v1: f64, v2: f64) -> bool {
        const ULP_TOL: f64 = 100.0;
        (v1 - v2).abs() <= (f64::EPSILON * (v1 + v2).abs() * ULP_TOL)
    }

    fn in_range(&self, value: f64) -> bool {
        if self.upper.is_some_and(|u| Self::are_close(u, value))
            || self.lower.is_some_and(|l| Self::are_close(l, value))
        {
            return true;
        }
        if !self.inside_boundary(&value) {
            return false;
        }
        if let (Some(l), Some(s)) = (self.lower, self.step) {
            if !Self::are_close(((value - l) / s).round() * s + l, value) {
                return false;
            }
        }
        true
    }
}